The independence polynomial of rooted products of graphs
نویسندگان
چکیده
منابع مشابه
extensions of some polynomial inequalities to the polar derivative
توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی
15 صفحه اولOn the greedoid polynomial for rooted graphs and rooted digraphs
We examine some properties of the 2-variable greedoid polynomial f(G;t, z) when G is the branching greedoid associated to a rooted graph or a rooted directed graph. For rooted digraphs, we show a factoring property of f (G;t ,z) determines whether or not the rooted digraph has a directed cycle.
متن کاملA characteristic polynomial for rooted graphs and rooted digraphs
We consider the one-variable characteristic polynomial p(G; ) in two settings. When G is a rooted digraph, we show that this polynomial essentially counts the number of sinks in G. When G is a rooted graph, we give combinatorial interpretations of several coe/cients and the degree of p(G; ). In particular, |p(G; 0)| is the number of acyclic orientations of G, while the degree of p(G; ) gives th...
متن کاملThe Hyper-Wiener Polynomial of Graphs
The distance $d(u,v)$ between two vertices $u$ and $v$ of a graph $G$ is equal to the length of a shortest path that connects $u$ and $v$. Define $WW(G,x) = 1/2sum_{{ a,b } subseteq V(G)}x^{d(a,b) + d^2(a,b)}$, where $d(G)$ is the greatest distance between any two vertices. In this paper the hyper-Wiener polynomials of the Cartesian product, composition, join and disjunction of graphs are compu...
متن کاملPolynomial Tutte Invariants of Rooted Integral Gain Graphs
We present dichromatic and tree-expansion polynomials of integral gain graphs that underlie the problem of counting lattice points in the complement of an integral affinographic hyperplane arrangement. This is a step towards finding the universal Tutte invariant of rooted integral gain graphs. Mathematics Subject Classifications (2000): Primary 05C22; Secondary 05C15.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2010
ISSN: 0166-218X
DOI: 10.1016/j.dam.2009.10.009